4.7 Article

Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 19, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12967-020-02698-x

关键词

Systemic lupus erythematosus; Immune infiltration; Integrated bioinformatics; IFI27; Biomarkers

资金

  1. National Natural Science Foundation of China [81673058]
  2. Chongqing Basic Science and Frontier Technology Research [cstc2017jcyjAX0251]

向作者/读者索取更多资源

The study identified IFI27 as a potential key player in the pathogenesis of SLE, and highlighted the important role of immune cell infiltration in the progression of the disease. The research sheds light on new insights into the molecular mechanisms of SLE and provides potential markers for diagnosis and progression monitoring.
Background Systemic lupus erythematosus (SLE) is a multisystemic, chronic inflammatory disease characterized by destructive systemic organ involvement, which could cause the decreased functional capacity, increased morbidity and mortality. Previous studies show that SLE is characterized by autoimmune, inflammatory processes, and tissue destruction. Some seriously-ill patients could develop into lupus nephritis. However, the cause and underlying molecular events of SLE needs to be further resolved. Methods The expression profiles of GSE144390, GSE4588, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between SLE and healthy samples. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by metascape etc. online analyses. The protein-protein interaction (PPI) networks of the DEGs were constructed by GENEMANIA software. We performed Gene Set Enrichment Analysis (GSEA) to further understand the functions of the hub gene, Weighted gene co-expression network analysis (WGCNA) would be utilized to build a gene co-expression network, and the most significant module and hub genes was identified. CIBERSORT tools have facilitated the analysis of immune cell infiltration patterns of diseases. The receiver operating characteristic (ROC) analyses were conducted to explore the value of DEGs for SLE diagnosis. Results In total, 6 DEGs (IFI27, IFI44, IFI44L, IFI6, EPSTI1 and OAS1) were screened, Biological functions analysis identified key related pathways, gene modules and co-expression networks in SLE. IFI27 may be closely correlated with the occurrence of SLE. We found that an increased infiltration of moncytes, while NK cells resting infiltrated less may be related to the occurrence of SLE. Conclusion IFI27 may be closely related pathogenesis of SLE, and represents a new candidate molecular marker of the occurrence and progression of SLE. Moreover immune cell infiltration plays important role in the progession of SLE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据