4.7 Article

Kink band and shear band localization in anisotropic perfectly plastic solids

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2020.104183

关键词

Anisotropic material; Layered material; Shear localization; Ideally plastic material

资金

  1. Department of Defense through the National Defense Science and Engineering Graduate Fellowship
  2. Department of Energy through the Los Alamos Agnew National Security Fellowship
  3. DOE NNSA [DE-NA0003857]
  4. Los Alamos National Laboratory Directed Research and Development (LORD) [20200182DR]
  5. National Nuclear Security Administration of the U.S. Department of Energy [89233218NCA000001]

向作者/读者索取更多资源

The research examines shear-driven strain localization and finds that plastic anisotropy can promote the formation of kink bands or shear bands depending on the loading orientation. In specific cases, the kinematics of kink bands and shear bands formation are indistinguishable.
Shear-driven strain localization has been observed in a wide variety of materials and may take the form of shear bands or kink bands. Based on observations of kink bands in plastically anisotropic metallic nanolaminates and single crystal metals, we posit that, for the specific case of isochoric deformation, the kinematics of kink band formation are indistinguishable from those of plane strain shear band formation. The only distinction between shear bands and kink bands in these systems would then be that kink bands 'lock up' at a particular value of material rotation while shear bands may progress to arbitrarily high strains. In order to investigate whether strong material anisotropy is sufficient to arrest shear localization at a geometry that matches the classic kink band geometry, we model the development of a band of simple shear within an anisotropic perfectly plastic material. The resulting analytical model provides the stress state needed to maintain the kinematics of simple shear as a function of material anisotropy, deformation band orientation, and shear strain (or equivalently, material rotation). It is found that plastic anisotropy can promote either kink band or shear band formation depending on the loading orientation. When the deviatoric stress is positive parallel to the plane of anisotropy, shear localization may progress without bound and a shear band is produced. When the deviatoric stress is negative parallel to the plane of anisotropy, shear localization is arrested after a certain material rotation, resulting in a kink band. Examination of the requisite applied stress state during kink band formation provides an explanation for the experimentally-observed 'lock up' geometry. Solutions for the band boundary inclination angle are obtained and used to provide bounds on permissible band angles for both shear bands and kink bands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据