4.6 Article

Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2020.104064

关键词

Additive manufacturing; Polymeric scaffold; Biodegradation; Mechanical properties; Triply periodic minimal surfaces (TPMS); Microcomputed tomography

资金

  1. NSERC's Discovery Grant
  2. NSERC's Discovery Development Grant
  3. NSERC's Chairs in Design Engineering Program

向作者/读者索取更多资源

The main aim of this paper is to assess the impacts of design, porosity, and biodegradation on the mechanical and morphological properties of triply periodic minimal surface (TPMS) scaffolds. The TPMS scaffolds were designed and manufactured with different porosities by using fused deposing modeling (FDM) technique. The biodegradation test on the scaffolds was performed for four and six months. The mechanical properties were assessed employing ASTM standard compression test and an in-situ mechanical testing stage. Microcomputed tomography (Micro-CT) technique was used to investigate detailed morphological properties of the scaffolds in 3D. Results indicate that the Schwarz-D scaffolds exhibit the highest compressive strength in lower porosity scaffolds but lose mechanical properties when the porosity was increased. On the contrary, Gyroid scaffolds maintain their strength as the porosity was increased. In addition, Gyroid scaffolds preserve a higher percentage of their compressive strength after six months of biodegradation. It was also observed that biodegradation phenomenon transformed the mechanical failure mode of the scaffolds from ductile to brittle. Morphological analysis of the scaffolds revealed detailed information, which support and clarify the observed variations in the mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据