4.6 Article

Bio-inspired surface modification of PEEK through the dual cross-linked hydrogel layers

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2020.104032

关键词

Polyetheretherketone; Bio-inspired; Dual cross-linked hydrogel; Friction; Self-repairing

资金

  1. National Natural Science Foundation of China [51975296]
  2. Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies

向作者/读者索取更多资源

The biocompatible high-performance material PEEK (polyetheretherketone) is an attractive implant material, however, its hydrophobicity and high friction coefficients severely hinder its biomedical applications. Thus, it is inferred from the recent advances in surface modification technology, achieving the biomimetic natural joint lubrication systems on PEEK still remains a challenge. In view of the above, herein we proposed a novel two-step strategy to fabricate a soft (dual cross-linked hydrogel) layer-hard (PEEK) substrate texture that mimics the structure and function of soft cartilage on the hard basal bone in joints. At first, a layer of acrylic acid-co-acryl amide (AA-AM) hydrogel is anchored to the PEEK substrate through UV-initiated polymerization. In the second step, hydrogel coated PEEK substrate is immersed in ferric nitrate solution to create the secondary cross-linkage between Fe3+ and -COOH groups in the hydrogel. As a result, the consequential top-coat hydrogel layer not only transforms the surface wettability (hydrophobic to hydrophilic) but also provides scratch resistance to the un-derlying PEEK substrate. The modified specimens display low friction coefficients in water under different load conditions. In addition, the obtained surface exhibits a certain self-repairing ability due to its unique physically reversible network structure. Therefore, this work provides a promising strategy for broadening the use of PEEK in orthopedic implants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据