4.8 Article

Large Electrostrictive Coefficient in a Two-Dimensional Hybrid Perovskite Ferroelectric

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 3, 页码 1664-1672

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12907

关键词

-

资金

  1. National Natural Science Foundation of China [21991142, 21831004]

向作者/读者索取更多资源

The phosphonium-based 2D HOIP ferroelectric (EATMP)PbBr4 has been discovered with high Curie temperature and electrostrictive coefficient, showing excellent potential for applications in future smart devices.
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) are attracting tremendous interest for their great scientific and technological potential in photovoltaics and optoelectronics. Although the ferroelectricity in 2D HOIPs has been greatly developed, however, to date no phosphonium-based 2D HOIP ferroelectrics have yet been found. Meanwhile, electrostriction plays an important role in the electromechanical behavior of ferroelectrics, while it has never been reported for 2D HOIP ferroelectrics. Here, we present the first phosphonium-based 2D HOIP ferroelectric (EATMP)PbBr4 (EATMP = (2-aminoethyl)trimethylphosphanium) with a direct bandgap of 2.84 eV. Notably, (EATMP)PbBr4 possesses a high Curie temperature of 534 K, which is the highest among all reported 2D HOIP ferroelectrics. Moreover, it exhibits a large electrostrictive coefficient of about 3.96 m(4) C-2 as well, far exceeding those of PVDF (1.3 m(4) C-2) and inorganic ones (similar to 0.034-0.096 m(4) C-2). With excellent ferroelectric and piezoelectric properties and the merit of easy fabrication, (EATMP)PbBr4 shows great potential in applications for future smart devices of actuators, transducers, and sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据