4.7 Article

Non-synchronous vibration in axial compressors: Lock-in mechanism and semi-analytical model

期刊

JOURNAL OF SOUND AND VIBRATION
卷 488, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115649

关键词

Axial compressor; Non-synchronous vibrations; Lock-in

资金

  1. Rolls-Royce plc
  2. EPSRC under the Prosperity Partnership Grant Cornerstone: Mechanical Engineering Science to Enable Aero Propulsion Futures [EP/R004951/1]
  3. EPSRC [EP/R004951/1] Funding Source: UKRI

向作者/读者索取更多资源

(Non-Synchronous-Vib)ration (NSV) in high-speed turbomachinery compressors is an aeroelastic phenomenon which can have devastating consequences, including loss of rotor blades. Despite extensive research over the past two decades its underlying mechanisms are not yet understood. This paper aims to explain the physical mechanisms causing NSV in a modern transonic compressor rotor. Referring to previous experimental results and using validated computational fluid dynamics (CFD), a parametric study is performed in order to characterize the aerodynamic disturbance causing NSV, and to understand the lock-in mechanism between the fluid and the structure seen during NSV. The results show that the process is driven by aerodynamics in the tip region. Under highly throttled conditions, the tip leakage flow blocks the passage and causes the disturbance, which is characterised as a vorticity fluctuation, to propagate circumferentially in the leading edge plane. It is found that the propagation speed of the disturbance is determined by the mean flow conditions and only its phase is periodically modulated through interaction with oscillating blades. This is the mechanism facilitating lock-in. Based on these findings a semi-analytic model is developed and calibrated with the numerical results. The model is capable of simulating the lock-in process and correctly predicts unstable vibration modes. It can therefore be used to identify critical operating conditions and develop mitigation measures early in the design. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据