4.7 Article

Ultra-wide low-frequency band gap in a tapered phononic beam

期刊

JOURNAL OF SOUND AND VIBRATION
卷 499, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2021.115977

关键词

Phononic crystals; Band gap; Elastic wave; Vibration isolation

资金

  1. Global Frontier Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2014M3A6B3063711]
  2. National Research Foundation of Korea [2014M3A6B3063711] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Researchers proposed a tapered phononic beam with a unit cell consisting of two identical uniform parts and a thickness- and width-varying part. By controlling the geometrical parameters, the phononic beam achieved an ultra-broad and ultra-low frequency band gap from 3.6 Hz to 237.9 Hz.
We propose a tapered phononic beam with a broad low-frequency band gap for flexural waves. A unit cell of the phononic beam consists of two identical uniform parts and a thickness- and width-varying part sandwiched between them. Thickness and width profiles and uniform beam length are controlled to change the shear and rotational stiffnesses of the phononic beam, changing the starting and ending frequencies of the first band gap. By identifying the effects of those geometrical parameters on band structures, we determine the parameter values that enable the phononic beam to yield an ultra-broad and ultra-low band gap from 3.6 Hz to 237.9 Hz with a small lattice constant of lambda/25. For experimental realization, a finite phononic beam with three unit cells is fabricated by wire electric discharge machining and its displacement transmission is measured through impact hammer tests. Particularly low transmission of -35 dB to -10 dB is observed at the band-gap frequency range. We briefly present ongoing works to enhance the structural robustness of the phononic beam by changing geometrical parameters or material of a thin and narrow part. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据