4.8 Article

Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles

期刊

JOURNAL OF POWER SOURCES
卷 478, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228991

关键词

Lithium-ion battery; Capacity estimation; Remaining useful life prediction; State of charge; Resistance estimation; Particle filter; Electrified vehicles

向作者/读者索取更多资源

This paper proposes and validates a stochastic prognostic model for capacity loss and remaining useful life (RUL) in lithium-ion pouch cells with graphite anodes and NMC-LMO cathodes. The model was developed using data from an experimental campaign which studied the effect of C-rate, minimum SOC, temperature, and charge-depleting usage on aging in plug-in hybrid electric vehicle (PHEV) batteries. The proposed algorithm estimates capacity loss and RUL as a function of resistance and operating conditions including charge sustaining/depleting use and temperature, and its stochastic nature is able to capture the variability of the data. The battery resistance is estimated using a particle filter developed for an experimentally validated equivalent circuit battery model. The particle filter is designed to perform combined estimation of State of Charge and internal resistance, which is used as an input to the stochastic capacity loss model. Finally, the stochastic model predicts the capacity loss with a root mean square error (RMSE) of less than 1% and RUL with an RMSE of 1.6 kAh, and can be integrated into on-board battery management systems in PHEV to monitor the health of lithium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据