4.8 Article

Hydrogen generation from ball milled Mg alloy waste by hydrolysis reaction

期刊

JOURNAL OF POWER SOURCES
卷 479, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228711

关键词

Mg alloy waste; Magnesium-based materials; Hydrogen; Hydrolysis reaction; Graphite; AlCl3

资金

  1. AZM & Saade Association
  2. Lebanese University
  3. MINCyT-ECOS-SUD [A17A03]
  4. Lisea Carbone foundation

向作者/读者索取更多资源

Hydrolysis is an effective method for generating hydrogen from Mg alloy waste provided from the sacrificial anode industry. Mg alloy was ball milled under H-2 to enhance its hydrolysis reactivity. The effect of ball milling time, the nature of the additives (graphite and AlCl3) and the synergetic effect by chronological or simultaneous addition of 5 wt.% graphite and 5 wt.% AlCl3 were examined. It has been established that increasing milling time without additive beyond 2 hours (h) decreases the hydrolysis performance. Using AlCl3 slightly improves the hydrogen production properties when milling for 2 h. Incorporating graphite leads to the best hydrolysis properties (yield of 78% reached in 5 minutes when milled for 5 h). On the other hand, by combining both additives better results are obtained. The mixture prepared by milling for 2 h with 5 wt.% of graphite followed by additional milling for 2 h with 5 wt.% of AlCl3 shows the best hydrolysis performance with a yield of 92% achieved in 5 minutes. When both additives are incorporated, the simultaneous or sequential addition and the order of incorporation strongly affect the microstructure and the morphology, and consequently the hydrogen production performance of the powders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据