4.7 Article

Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 256, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2020.153297

关键词

Plant nutrition; Mycorrhiza; Root traits; Wheat; Below-ground interactions

资金

  1. Agencia Nacional de Investigacion y Desarrollo (ANID) Chile [ANID/FONDECYT/1170264, ANID/FONDECYT/11160385, ANID/FONDAP/15130015, ANID/DOCTORADO NACIONAL/21161474, ANID/PAI/T7817120011]
  2. Ministerio de Ciencia, Innovacion y Universidades [RTI2018-094350-B-C31]
  3. Ministerio de Economia y Empresa [AGL2015-64990-C2-1R]
  4. Plan Nacional de I+D+I [CGL2015-69118-C2-2-P-COEXMED-II]
  5. University of Jaen (Spain)
  6. European Regional Development Fund (ERDF)

向作者/读者索取更多资源

The study found that the interactions between plants and arbuscular mycorrhizal (AM) fungi are significantly influenced by the fungus species and intra-specific variations in root traits at the genotype level. Additionally, the growth responses related to improved nutrition depend on the plant's intrinsic acquisition efficiency.
This study aimed to examine how interactions at both plant genotype and arbuscular mycorrhizal fungus species levels affected the expression of root traits and the subsequent effect on plant nutrition and growth. We used two wheat cultivars with contrasting phosphorus (P) acquisition efficiencies (Tukan and Crac) and two arbuscular mycorrhizal (AM) fungi (Rhizophagus intraradices and Claroideoglomus claroideum). Plant growth, as well as morphological and architectural root traits, were highly dependent on the myco-symbiotic partner in the case of the less P-acquisition efficient cultivar Tukan, with mycorrhizal responses ranging from -45 to 54 % with respect to non-mycorrhizal plants. Meanwhile, these responses were between only -7 and 5 % in the P-acquisition efficient cultivar Crac. The AM fungal species produced contrasting mechanisms in the improvement of plant nutrition and root trait responses. Colonization by R. intraradices increased Ca accumulation, regardless of the cultivar, but reduced root growth on Tukan plants. On the other hand, C. claroideum increased P content in both cultivars, with a concomitant increase in root growth and diffusion-based nutrient acquisition by Tukan. Moreover, plants in symbiosis with R. intraradices showed greater organic acid concentration in their rhizosphere compared to C. claroideum-colonized plants, especially Tukan (24 and 35 % more citrate and oxalate, respectively). Our results suggest that the responses in plant-AM fungal interactions related to nutrient dynamics are highly influenced at the fungus level and also by intra-specific variations in root traits at the genotype level, while growth responses related to improved nutrition depend on plant intrinsic acquisition efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据