4.5 Article

Cropping diversity with rice influences soil aggregate formation and nutrient storage under different tillage systems

期刊

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
卷 184, 期 1, 页码 150-161

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.202000310

关键词

aggregate stability; mean weight diameter; nutrient sequestration; rice; system productivity

资金

  1. Bangladesh Agricultural University Research Systems [2017/261/BAU]
  2. University Grants Commission Bangladesh [2017/261/BAU]

向作者/读者索取更多资源

The study shows that tillage and cropping diversity have significant impacts on soil aggregate stability and nutrient distribution in a rice ecosystem, with wheat-rice-rice diversity and minimum tillage showing higher potential for soil fertility sustenance and crop productivity.
Background: The soils under continuous rice monocropping are currently facing a serious threat of accelerated soil and environmental quality degradation. Aims: Examining the impact of tillage and cropping diversity on soil aggregate stability and associated nutrients in a sub-tropical rice ecosystem. Methods: A split-plot experiment with tillage (minimum, MT vs. conventional, CT) as a main plot and cropping diversity [mustard (Brassica napus)-rice (Oryza sativa)-rice (M-R-R), wheat (Triticum aestivum)-rice-rice (W-R-R), and lentil (Lens esculenta)-rice-rice (L-R-R)] as a sub-plot was repeated for four years. Soil aggregate properties were measured using wet sieving techniques. Soil organic carbon (SOC) and nutrients were measured in different aggregate size groups as well as in the bulk soil samples. Results: Results show that all the aggregate size groups were similar in both MT and CT, except in 0.85-0.30 mm. Likewise, cropping diversities increased soil aggregation, being higher aggregate size of < 0.053 mm in M-R-R relative to the W-R-R and L-R-R, where the latter two were alike. By contrast, > 2 mm aggregates were higher in L-R-R than in M-R-R and W-R-R, where the latter two were similar. The MT increased aggregate mean weight diameter (MWD) by 14% in W-R-R, and by 29% in L-R-R. Soil organic carbon (SOC), total N (TN), and available P were higher in MT than in CT, while it was alike for exchangeable K and available S. While W-R-R had a higher aggregate-associated SOC, available P, and available S, L-R-R had a higher TN, and M-R-R had a higher exchangeable K. While SOC, TN, and exchangeable K accumulated more in the > 0.85 mm size aggregates, the available P, in contrast, accumulated more in Conclusion: Wheat-rice-rice diversity, coupled with minimum tillage, has a higher potential for soil fertility sustenance and crop productivity through better nutrient protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据