4.5 Article

Augmented Ultrasonic Data for Machine Learning

期刊

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10921-020-00739-5

关键词

Machine learning; NDT; Ultrasonic inspection; Data augmentation; Virtual flaws

向作者/读者索取更多资源

Flaw detection in non-destructive testing has traditionally relied on trained human inspectors, but recent advances in machine learning algorithms offer potential solutions. In this study, modern deep convolutional networks and data augmentation techniques were used to achieve flaw detection from ultrasonic data at human-level performance.
Flaw detection in non-destructive testing, especially for complex signals like ultrasonic data, has thus far relied heavily on the expertise and judgement of trained human inspectors. While automated systems have been used for a long time, these have mostly been limited to using simple decision automation, such as signal amplitude threshold. The recent advances in various machine learning algorithms have solved many similarly difficult classification problems, that have previously been considered intractable. For non-destructive testing, encouraging results have already been reported in the open literature, but the use of machine learning is still very limited in NDT applications in the field. Key issue hindering their use, is the limited availability of representative flawed data-sets to be used for training. In the present paper, we develop modern, deep convolutional network to detect flaws from phased-array ultrasonic data. We make extensive use of data augmentation to enhance the initially limited raw data and to aid learning. The data augmentation utilizes virtual flaws-a technique, that has successfully been used in training human inspectors and is soon to be used in nuclear inspection qualification. The results from the machine learning classifier are compared to human performance. We show, that using sophisticated data augmentation, modern deep learning networks can be trained to achieve human-level performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据