4.7 Article

Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 319, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.114121

关键词

Nanoparticle; Heat release storage; FEM; Solidification, PCM

资金

  1. National Natural Science Foundation of China [11971142, 11871202, 61673169, 11701176, 11626101, 11601485]

向作者/读者索取更多资源

The main goal of this attempt is achieving higher rate of solidification with employing two passive techniques. Mixing the based PCM with nanoparticles and considering the wavy shape for walls were two techniques were incorporated. Copper oxide nanomaterial was dispersed in to water with concentration of 0.04 which let us employing homogeneous model. Based on this fact, empirical formulations were utilized for predicting features of NEPCM and various shapes of nano sized particles were considered in thermal conductivity formula. Due to inherent of solidification phenomena, buoyancy can be ignored and pure conduction mechanism with involving the transient source term of solid faction was solved by means of FEM. During the process, the configurations of grids change and the regions around the solid front have finer grid. This opportunity offers outputs with greater accuracy. As shape factor rises, the greater conduction mode can be obtained and similar behavior can be achieved with considering greater amplitude of wavy walls. The best case in term of discharging time is that of m 5.7 and A = 05 in which 156.17 s required to finish the process. Greater amount of shape factor can decrease the time about 5.91% and 5.89% when A = 05 and 0.1, respectively. Also, with growth of A. time reduces about 22.66% which indicate better solidification rate. Inclusion of nanoparticles can improve the discharging rate about 17.9%. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据