4.7 Article

Showerhead feed distribution for optimized performance of large scale membrane distillation modules

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 618, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2020.118664

关键词

Showerhead MD module design; Flow distribution; Optimization; Module scale-up; Temperature polarization; CFD

资金

  1. King Abdullah University of Science and Technology (KAUST), Saudi Arabia
  2. Water Desalination and Reuse Center (WDRC)

向作者/读者索取更多资源

Membrane distillation (MD) process has the capability to handle highly saline solutions, but scaling up remains a challenge due to design issues, particularly temperature polarization. Utilizing CFD calculations, a combination of lateral flow and progressive feeding can significantly enhance module productivity.
The outstanding capabilities of membrane distillation (MD) process to handle highly saline solutions are still driving research efforts to take this process to the industrial level. MD scale-up remains a challenge as the objective of increasing performance faces several design issues imposed by intrinsic physical constraints. Among the major hurdles encountered with an increase in membrane active area stands temperature polarization, a phenomenon that drastically penalizes MD efficiency. It is shown that in a typical permeate flux distribution over the membrane of an MD module, the highest local permeate flux values contribute to less than 1% of the total module production, while average values add up to half the production, suggesting a dramatic underuse of the membrane active area. Therefore, this investigation explores design opportunities to enhance module performance by reducing polarization for large-scale modules. Using state of the art CFD calculations, it is shown that combined lateral flow and progressive feeding from perforated top wall of the feed channel, and eventually the permeate channel in case of direct contact membrane distillation (DCMD) variant, can considerably increase the productivity of the module. Results further confirm the critical importance of flow distribution at the vicinity of the membrane and its effect on permeate flux. Careful analysis reveals that there is an optimum flow rate ratio between the two feed paths and that the design of the holes of the perforated plate plays a critical role to ensure flow smoothness and reduce temperature polarization. Simulations show that the productivity of a 1 m2 flat sheet module can be enhanced by more than 50% under the same operating conditions, which opens up new opportunities for MD scale up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据