4.5 Article

Additive Manufacturing of Functional Inconel 718 Parts from Recycled Materials

期刊

出版社

SPRINGER
DOI: 10.1007/s11665-020-05402-8

关键词

ANSYS additive science; direct metal laser solidification; fractography; IN718; mechanical testing; selective laser melting

向作者/读者索取更多资源

This study focused on manufacturing and characterizing geometrically complex functional parts using recycled Inconel 718 material. By optimizing printing parameters and studying mechanical properties, it was shown that recycled material can be used to additively manufacture high-quality components.
This paper focuses on manufacturing and characterization of geometrically complex functional parts fabricated from recycled Inconel 718, a nickel-based superalloy. A novel gas atomization process was used to produce the feedstock for a powder bed fusion process by recycling and melting used Inconel parts. An analysis of the melt-pool geometry and microstructure was conducted using finite element method to determine the optimal print parameters for an EOS M100 3D printer. Densities and mechanical properties of recycled Inconel 718 were tested for various printing parameters using standard test methods and anisotropic tensile behavior of additively manufactured parts were studied. The experimental data were compared with historical and simulated data and indicated equal or better properties compared to the baseline. Chemical composition, microstructure, and fracture surface of broken samples were also examined. Finally, a simulation of the additive manufacturing process was performed using the mechanical properties results and was used to redesign and build a turbine for an automotive turbocharger. The results of this study indicate that scrap Inconel 718 parts can be used to additively manufacture high-quality functional parts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据