4.4 Article

Is SGSH heterozygosity a risk factor for early-onset neurodegenerative disease?

期刊

JOURNAL OF INHERITED METABOLIC DISEASE
卷 44, 期 3, 页码 763-776

出版社

WILEY
DOI: 10.1002/jimd.12359

关键词

dendritic tree; Golgi-Cox; heterozygote; lysosomal; motor cortex; negative geotaxis

向作者/读者索取更多资源

Lysosomal dysfunction may play a role in neurodegenerative disorders like Parkinson's disease. Mutations in genes encoding lysosomal enzymes have been associated with PD, and studies on mice with a Sgsh gene mutation revealed impaired behavior and brain structure, but no overt disease lesions associated with PD or other neurodegenerative disorders were observed.
Lysosomal dysfunction may be an important factor in the pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) have been found in PD patients, and some but not all mutations in other lysosomal enzyme genes, for example, NPC1 and MCOLN1 have been associated with PD. We have examined the behaviour and brain structure of mice carrying a D31N mutation in the sulphamidase (Sgsh) gene which encodes a lysosomal sulphatase. Female heterozygotes and wildtype mice aged 12-, 15-, 18- and 21-months of age underwent motor phenotyping and the brain was comprehensively evaluated for disease-associated lesions. Heterozygous mice exhibited impaired performance in the negative geotaxis test when compared with wildtype mice. Whilst the brain of Sgsh heterozygotes aged up to 21-months did not exhibit any of the gross features of PD, Alzheimer's disease or the neurodegenerative lysosomal storage disorders, for example, loss of striatal dopamine, reduced GBA activity, alpha-synuclein-positive inclusions, perturbation of lipid synthesis, or cerebellar Purkinje cell drop-out, we noted discrete structural aberrations in the dendritic tree of cortical pyramidal neurons in 21-month old animals. The overt disease lesions and resultant phenotypic changes previously described in individuals with heterozygous mutations in lysosomal enzyme genes such as glucocerebrosidase may be enzyme dependent. By better understanding why deficiency in, or mutant forms of some but not all lysosomal proteins leads to heightened risk or earlier onset of classical neurodegenerative disorders, novel disease-causing mechanisms may be identified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据