4.7 Article

A two-step process for pre-hydrolysis of hemicellulose in pulp-impregnated effluent with high alkali concentration to improve xylose production

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 402, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123573

关键词

Pulp-impregnated effluent; Hemicellulose; High alkali concentration; Pre-hydrolysis; Xylose

资金

  1. National Natural Science Foundation of China [31470787]
  2. Department of Science and Technology of Jilin Province [20190902014TC, 20170519015JH]

向作者/读者索取更多资源

This study proposes a two-step method to reduce the inhibition of alkali on xylose production from hemicellulose, leading to an increased xylose yield and aiding in the resource utilization of high alkali concentration wastewater.
The viscose fiber production process is accompanied by the accumulation of pulp-impregnated effluent (PIE), including hemicellulose and large amounts of alkali, and discharge of PIE will cause environment pollution. This paper aims to relieve the inhibition of high concentration of alkali on xylose production from hydrolysis of hemicellulose in PIE. Based on the fact that solid acid uses H+ at the acid sites to exchange with cations in PIE and can be recycled, a two-step method including an extra pretreatment process before pre-hydrolysis (SPP) is proposed. After the alkali was removed by the H+ dissociated from solid acid in the extra pretreatment process, the pH of PIE dropped from 14 to 4, and the content of Na+ and proteins was reduced by 99.13 % and 78.51 %, respectively. After SPP, the polymerization degree of the hemicellulose decreased by 73.4 %, and the subsequent enzymatic hydrolysis process was promoted. Finally, the xylose yield of SPP followed by enzymatic hydrolysis reached 57.15 g/L, which was 145.38 % more than that of enzymatic hydrolysis alone. The load of a downstream ion purification procedure was relieved compared to that of inorganic acid hydrolysis. The development of SPP contributes to the resource utilization of high alkali concentration wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据