4.7 Article

Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 401, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123782

关键词

Starch; Layered double hydroxide; Morphology; Thermal stability; NSAIDs

资金

  1. UGC, New Delhi [MRP-MAJOR CHEM-2013-36417]
  2. R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies program - Ministry of Environment [2018001850001]
  3. National Research Foundation of Korea (NRF) - Ministry of Science, ICT, & Future Planning [2016R1E1A1A01940995]

向作者/读者索取更多资源

The study synthesized starch-Mg/Al layered double hydroxide (S-Mg/Al LDH) composites using a co-precipitation method for the quantification of nonsteroidal anti-inflammatory drugs (NSAIDs). The developed method exhibited good performance and reusability in complex matrices with detection limits in the pg/mL range.
Using a co-precipitation method, starch-Mg/Al layered double hydroxide (S-Mg/Al LDH) composites were synthesized. Their physicochemical properties were assessed by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermo-gravimetric analysis. The quantification of six nonsteroidal anti-inflammatory drugs (NSAIDs) was conducted using real samples (e.g., hospital waste water, river water, sewage treatment plant water, and tablet formulations) by gas chromatography-mass spectrometry. For the development of this method, the system was optimized in terms of several key variables (e.g., pH, flow rate, and eluent type/volume). The developed method for NSAIDs exhibited good resolution, sensitivity, reproducibility, and specificity even in complex matrices with limits of detection between 4 and 20 pg/mL. Hence, S-Mg/Al LDH composites were proven to be efficient and fast solid phase extraction (SPE) sorbents for NSAIDs. In addition, each LDH-SPE cartridge showed good reusability without a noticeable change in performance (e.g., up to 30 cycles) and target recoveries between 99.5 - 82.9 %. This work should open up new opportunities for a sesnsitive and sustainable quantitative method for the determination of NSAIDs in complex samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据