4.7 Article

Unravelling metabolism and microbial community of a phytobed co-planted with Typha angustifolia and Ipomoea aquatica for biodegradation of doxylamine from wastewater

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 401, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123404

关键词

Phytoremediation; Pharmaceutical contaminants; Doxylamine; Plant-microbiome system; Metabolic pathway

资金

  1. Young Research Program of the National Research Foundation of Korea (NRF), Ministry of Education, Science, and Technology (MEST) of the South Korean government [2019R1F1A1064379]
  2. Mid-Career Researcher Program of the National Research Foundation of Korea (NRF), Ministry of Education, Science, and Technology (MEST) of the South Korean government [2020R1A2C3004237]
  3. Ocean University of China [862001013135]
  4. National Research Foundation of Korea [2019R1F1A1064379] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study investigated the biodegradation and metabolic fate of a frequently found pharmaceutical contaminant, doxylamine, by Typha angustifolia and Ipomoea aquatica. A constructed phytobed co-planted with these two plants showed high efficiency in removing doxylamine and other pollutants from real wastewater. High-throughput sequencing of soil and rhizosphere indicated the dominated microbial communities of the phytobed.
Pharmaceutical contaminants in environment induce unexpected effects on ecological systems and human; thus, development of efficient technologies for their removal is immensely necessary. In this study, biodegradation and metabolic fate of a frequently found pharmaceutical contaminant, doxylamine by Typha angustifolia and Ipomoea aquatica was investigated. Microbial community of the plant rhizosphere has been identified to understand the important roles of the functional microbes. The plants reduced 48-80.5 % of doxylamine through hydrolysis/dehydroxylation and carbonylation/decarbonylation. A constructed phytobed co-planted with T. angustifolia and I. aquatica removed 77.3 %, 100 %, 83.67 %, and 61.13 % of chemical oxygen demand, total nitrogen, total phosphorus, and doxylamine respectively from real wastewater. High-throughput sequencing of soil and rhizosphere indicated that the phyla Proteobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Actinobacteria, and Cyanobacteria dominated the microbial communities of the phytobed. Current study has demonstrated the applicability of the developed phytobeds for the treatment of doxylamine from municipal wastewater and provide a comprehensive understanding of its metabolism through plant and its rhizospheric microbial communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据