4.7 Article

Role of complexation in the photochemical reduction of chromate by acetylacetone

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 400, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123306

关键词

Cr(VI); Reduction; Photo-induced complexation; Acetylacetone; Hydration

资金

  1. National Natural Science Foundation of China [21906078]
  2. Natural Science Foundation of Jiangsu Province, China [BK 20190322]
  3. Ministry of Science and Technology of the People's Republic of China [2018YFC1802003, 2019YFC0408302]

向作者/读者索取更多资源

Organic ligands can alter the redox behavior of metal species through the generation of metal-ligand complexes. Photo-induced complexation between ligands and metals is an important, but under-appreciated, aspect of process. Acetylacetone (AA) is a good chelating agent due to keto-enol tautomerization. In the presence of AA, photoreduction of Cr(VI) is accelerated; however, it is unclear exactly how complexation is involved in UV/AA mediated Cr(VI) reduction. On the basis of spectral and kinetic analyses, this study shows that the formation of {Cr(VI)-AA}* complexes is the main mechanism of Cr(VI) reduction by UV/AA. Evidence for this includes (1) the formation rate constant of Cr(III)-AA complexes in the UV system was 2-3 orders of magnitude greater than that in the thermal system; (2) there was a linear relationship between the photons absorbed by AA and the reduction rate constants of Cr(VI); and (3) the reaction appeared initially zero-order in Cr(VI) and turned to first-order as the pool of available Cr(VI) ran out. The results presented here are not only important for the better understanding of the complexation effects in the reduction of Cr(VI), but also crucial for the possible application of the UV/AA process in many other scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据