4.7 Article

Resonance oscillations of a drop (bubble) in a vibrating fluid

期刊

JOURNAL OF FLUID MECHANICS
卷 909, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.949

关键词

drops; parametric instability; capillary waves

向作者/读者索取更多资源

The paper discusses the resonance oscillations of a drop surrounded by a fluid of different density in zero gravity conditions under small amplitude vibrations. When viscosity is small, the resonance oscillations of the drop can be calculated using linear approximation, but finite viscosity has a destabilizing effect on resonance.
The paper deals with the resonance oscillations of a drop (bubble) surrounded by a fluid of different density in a container subjected to small amplitude vibrations in zero gravity conditions. The drop size is considered to be large in comparison with both the vibration amplitude and the thickness of viscous Stokes layers. The calculations for parametrically excited oscillations of the drop are carried out in the linear approximation, for inviscid and low viscous media, neglecting compressibility effects. The resonant oscillation is a doublet of neighbouring modes of eigen-oscillations of the drop, for which the sum of frequencies coincides with the frequency of the forced vibrations. This means that the basic state becomes unstable against quasi-periodic oscillations. The finite viscosity implies a finite threshold for the excitation of resonance. On the other hand, the viscosity plays a destabilizing role; at non-zero (even infinitesimal) viscosity the width of the instability frequency range turns out to be greater than in the case of inviscid fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据