4.7 Article

Consistent lattice Boltzmann model for multicomponent mixtures

期刊

JOURNAL OF FLUID MECHANICS
卷 909, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.853

关键词

kinetic theory

资金

  1. European Research Council (ERC) [834763-PonD, s897]

向作者/读者索取更多资源

A new lattice Boltzmann model for multicomponent ideal gas mixtures is proposed, which consists of two parts for modeling the dynamics and energy of the mixture. The model eliminates passive scalar advection-diffusion coupling and extends the lattice Boltzmann equation to the compressible flow regime on the standard three-dimensional lattice.
A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan-Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzmann equation on the standard discrete velocity set. Second, a compressible lattice Boltzmann model for the momentum and energy of the mixture is established. Both parts are consistently coupled through mixture composition, momentum, pressure, energy and enthalpy whereby a passive scalar advection-diffusion coupling is obviated, unlike in previous approaches. The proposed model is realized on the standard three-dimensional lattices and is validated with a set of benchmarks highlighting various physical aspects of compressible mixtures. Stefan-Maxwell diffusion is tested against experiment and theory of uphill diffusion of argon and methane in a ternary mixture with hydrogen. The speed of sound is measured in various binary and ternary compositions. We further validate the Stefan-Maxwell diffusion coupling with hydrodynamics by simulating diffusion in opposed jets and the three-dimensional Kelvin-Helmholtz instability of shear layers in a two-component mixture. Apart from the multicomponent compressible mixture, the proposed lattice Boltzmann model also provides an extension of the lattice Boltzmann equation to the compressible flow regime on the standard three-dimensional lattice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据