4.7 Article

Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 278, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.111497

关键词

Brackish groundwater; Nanofiltration; Response surface methodology; Reverse osmosis; Artificial neural network

资金

  1. Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, New Delhi, India [ECR/2016/001668]

向作者/读者索取更多资源

In this study, ANN and RSM models were used to optimize the process of nanofiltration and reverse osmosis membrane filtration systems for brackish groundwater treatment. The best hybrid configuration was determined through numerical optimization, with performance influenced by system configurations and feed concentration.
Artificial neural network (ANN) and response surface methodology (RSM) were employed to develop models for process optimisation of pilot scale nanofiltration (NF) and reverse osmosis (RO) membrane filtration system for the treatment of brackish groundwater. The process variables for this study were feed concentration, temperature, pH and pressure. The performance of NF/RO was assessed in terms of permeate flux, water recovery, salt rejection and specific energy consumption, which were considered as responses. The experimental design was employed to develop both RSM and ANN models. RSM model was validated for the whole range of experimental levels, while the ANN model was considered for the whole range of experimental design. RSM and ANN models were statistically analysed using analysis of variance (ANOVA). Further, the models were graphically compared for its predictive capacity. Numerical optimisation of NF and RO pilot plant to determine the optimum conditions were verified. Finally, using the optimum conditions, three hybrid configurations of NF and RO were studied to determine the best mode for the treatment of brackish groundwater. It was found that parallel NF-RO had a recovery of 57.18% and rejection of 44.89%, for RO-concentrate-NF (RO-C-NF) recovery was 49.55% and rejection of 38.64% & for NF-concentrate-RO (NF-C-RO), the recovery of 39.53% and rejection of 49.66% was obtained. Results obtained also suggested that the mode of configurations and the feed concentration affect the performance of the hybrid system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据