4.7 Article

Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.)

期刊

BMC PLANT BIOLOGY
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12870-015-0657-4

关键词

TaCIPK24; CBL-CIPK; Expression profiles; Stress response; Preferential interactions; Wheat

资金

  1. International S & T Cooperation Key Projects of MoST [2009DFB30340]
  2. National Genetically Modified New Varieties of Major Projects of China [2015ZX08002-004, 2015ZX08010-004]
  3. Research Fund for the Doctoral Program of Higher Education of China [2012014211075]

向作者/读者索取更多资源

Background: Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca2+ signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. Results: A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up-or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na+ efflux and an enhanced reactive oxygen species scavenging capacity. Conclusions: These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据