4.7 Article

High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 424, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2020.109844

关键词

Compressible Navier-Stokes equations; Fully-discrete entropy stability; Discontinuous collocated Galerkin methods; hp-Adaptivity; Turbulent and nonsmooth flows

资金

  1. King Abdullah University of Science and Technology

向作者/读者索取更多资源

This study presents a fully-discrete hp-adaptive entropy stable discontinuous collocated Galerkin method for the compressible Navier-Stokes equations, utilizing the SSDC framework. The method demonstrates high-order numerical performance and systematic design, showcasing its potential as a base scheme for future unstructured computational fluid dynamics tools. Results indicate efficient scaling of the parallel SSDC solver over 100,000 processes.
This work reports on the performances of a fully-discrete hp-adaptive entropy stable discontinuous collocated Galerkin method for the compressible Naiver-Stokes equations. The resulting code framework is denoted by SSDC, the first S for entropy, the second for stable, and DC for discontinuous collocated. The method is endowed with the summation-by-parts property, allows for arbitrary spatial and temporal order, and is implemented in an unstructured high performance solver. The considered class of fully-discrete algorithms are systematically designed with mimetic and structure preserving properties that allow the transfer of continuous proofs to the fully discrete setting. Our goal is to provide numerical evidence of the adequacy and maturity of these high-order methods as potential base schemes for the next generation of unstructured computational fluid dynamics tools. We provide a series of test cases of increased difficulty, ranging from non-smooth to turbulent flows, in order to evaluate the numerical performance of the algorithms. Results on weak and strong scaling of the distributed memory implementation demonstrate that the parallel SSDC solver can scale efficiently over 100,000 processes. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据