4.7 Article

Self-assembled nanoparticle-coated interfaces: Capillary pressure, shell formation and buckling

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 581, 期 -, 页码 251-261

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.07.110

关键词

Particle-coated interface; Buckling patterns; Multi-phase flow; Capillarity; Oil displacement

资金

  1. KAUST endowment

向作者/读者索取更多资源

This study investigates the impact of nanoparticle accumulation at fluid interfaces on capillary behavior and interfacial phenomena, revealing asymmetric responses of particle-coated droplets under different conditions.
Hypothesis: Particle accumulation at liquid-liquid or liquid-gas interfaces can significantly alter capillary behavior and give rise to unusual interfacial phenomena including the asymmetric macroscopic mechanical response of the interface. Experiments: This study explores the accumulation of cetyltrimethylammonium bromide-modified nanoparticles at fluid interfaces and the subsequent mechanical response of nanoparticle-coated droplets during contraction and expansion. Droplet tests involve the simultaneous recording of the droplet shape and the capillary pressure. Complementary single-pore experiments examine the response of particle-coated interfaces as they traverse a pore constriction. Findings: Interfaces promote order. The time-dependent nanoparticle accumulation at the interface is diffusion-controlled. The nanoparticle coated droplets can sustain negative capillary pressure before they buckle. Buckling patterns strongly depend on the boundary conditions: non-slip boundary conditions lead to crumples while slip boundary conditions result in just a few depressions. The particle-coated interface exhibits asymmetric behavior in response to particle-level capillary forces: an oil droplet in a nanofluid bath withstands a significantly higher capillary pressure difference than a nanofluid droplet in an oil bath. A first-order equilibrium analysis of interaction forces explains the asymmetric response. Single-constriction experiments show that the formation of particle-coated interfaces has a pronounced effect on fluid displacement in porous media. (C) 2020 The Author(s). Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据