4.7 Article

On the Generation of Weddell Sea Polynyas in a High-Resolution Earth System Model

期刊

JOURNAL OF CLIMATE
卷 34, 期 7, 页码 2491-2510

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-20-0229.1

关键词

Southern Ocean; Atmosphere-ocean interaction; Deep convection; Ocean circulation; Ocean dynamics; Climate models

资金

  1. U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research (BER) program through the Regional and Global Model Analysis (RGMA) program through the High-Latitude Application and Testing of Earth System Models (HiLATRASM) project
  2. U.S. Department of Energy through the LANL/LDRD Program
  3. Center for Non Linear Studies [LA-UR-2022461]

向作者/读者索取更多资源

The study reveals that the formation of larger Weddell Sea polynyas (WSPs) requires a shift from weakly negative to strongly negative wind stress curl, along with the presence of a large heat reservoir at depth and a pronounced Maud Rise Polynya (MRP) as a triggering factor. These conditions lead to the growth of WSPs, impacting the formation of Antarctic Bottom Water.
Larger Weddell Sea polynyas (WSPs), differentiated in this study from the smaller Maud Rise Polynyas (MRPs) that form to the east of the prime meridian in the proximity of the Maud Rise seamount, have last been observed in the 1970s. We investigate WSPs that grow realistically out of MRPs in a high-resolution preindustrial simulation with the Energy Exascale Earth System Model, version 0.1. The formation of MRPs requires high resolution to simulate the detailed flow around Maud Rise, whereas the realistic formation of WSPs requires a model to produce MRPs. Furthermore, WSPs tend to follow periods of a prolonged buildup of a heat reservoir at depth and weakly negative wind stress curl in association with the core of the Southern Hemisphere westerlies at an anomalously northern position. While this scenario also leads to drier conditions over the central Weddell Sea, which some literature claims to be a necessary condition for the formation of WSPs, our model results indicate that open-ocean polynyas do not occur during periods of weakly negative wind stress curl despite drier atmospheric conditions. Our study supports the hypothesis noted in earlier studies that a shift from a weakly negative to a strongly negative wind stress curl over the Weddell Sea is a prerequisite for WSPs to form, together with a large heat reservoir at depth. However, the ultimate trigger is a pronounced MRP, whose associated convection creates high surface salinity anomalies that propagate westward with the flow of the Weddell Gyre. If large enough, these anomalies trigger the formation of a WSP and a pulse of newly formed Antarctic Bottom Water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据