4.7 Article

An equation-based multiphysics modelling framework for oxidative ageing of asphalt pavements

期刊

JOURNAL OF CLEANER PRODUCTION
卷 280, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.124401

关键词

Long-term oxidative ageing; Multiphysics modelling; Oxidation kinetics; Oxygen transport; Heat transfer

资金

  1. Schlumberger Foundation
  2. European Commission [749232]
  3. Marie Curie Actions (MSCA) [749232] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Long-term oxidative ageing in asphalt pavements involves multiple physical fields and requires a comprehensive multiphysics model to accurately assess its effects. A new finite element model was developed to address the high nonlinearity and circular dependency of ageing-related physics. This model successfully predicted pavement temperature profiles and oxidation levels across different climate zones.
Long-term oxidative ageing occurs in asphalt pavements when they are exposed to the ambient environment for extended periods. This ageing phenomenon is dependent on multiple physical fields, including heat transfer, oxygen diffusion from air into interconnected air voids of asphalt pavement, oxygen diffusion from air void channels to asphalt mastic inside, and growth of oxidation products in bitumen. Most existing oxidative ageing models were established via coupling of limited physical fields. However, to accurately determine the oxidative ageing effect on pavement performance, there is a need to develop a multiphysics model that integrates all ageing-related physical fields comprehensively. The challenge lies in that the ageing-related physics are circularly dependent, time-dependent and highly nonlinear. This study developed a multiphysics and time-dependent finite element model that successfully addressed the issues of high nonlinearity and circular dependency of oxidative ageing in the asphalt pavements. Specifically, a differential equation-based approach was employed to efficiently couple the multiple physical fields into one integrated model. The multiphysics framework included a pavement temperature prediction model and an integrated ageing model. The model involved a variety of inputs such as sitespecific hourly climate data, parameters for oxidation kinetics of bituminous binder, volumetric properties of asphalt mixture, thermal and diffusive properties of pavement materials, and pavement structure. The pavement temperature model was validated using the pavement temperature profiles for different climate regions in the Long-Term Pavement Performance (LTPP) database. The integrated ageing model was validated using the Fourier-transform infrared spectroscopy (FTIR) data of field-aged asphalt cores in the literature. Results showed that the model can accurately predict the change in pavement temperature profile on an hourly basis and reliably predict the degree of oxidative ageing across pavement depth for different climate zones. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据