4.7 Article

Integration of wind generation uncertainties into frequency dynamic constrained unit commitment considering reserve and plug in electric vehicles

期刊

JOURNAL OF CLEANER PRODUCTION
卷 276, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.124272

关键词

Demand response (DR); Frequency dynamics; Plug in electric vehicles (PEVs); Uncertainty; Unit commitment (UC); Wind turbines (WT)

向作者/读者索取更多资源

Increased penetration of renewable resources in power systems and consequently cut back in the inertia of the whole power system is a significant concern for Unit Commitment (UC) in terms of energy scheduling and frequency dynamics management. The new modeling of the UC problem presented in this paper provides optimal scheduling of the energy and reserve considering the frequency dynamics of the power system. In this work, impact of Wind Turbines (WT) as the clean generation and Plug-in Electric Vehicles (PEV) as the energy storage system are investigated considering a less conservative probabilistic modeling uncertainty of the wind. The paper targets to protect the security of frequency dynamics taking into account the Demand Response (DR) program and contribution of PEVs succeeding a generation loss. The Frequency Dynamics-constrained Unit Commitment (FDUC) considering PEVs was formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem taking into consideration DR and WTs uncertainties. The proposed MINLP problem was then reformulated by the Reformulation-Linearization Technique (RLT) to derive a Mixed-Integer Linear Programming (MILP) problem. An IEEE 6-bus power system was served as a test system to evaluate the proposed approach and simulation results of four different Case study scenarios were obtained. Results revealed that the proposed approach can ensure frequency security and reduce the operational costs. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据