4.7 Article

Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass

期刊

JOURNAL OF CLEANER PRODUCTION
卷 277, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.124111

关键词

Biorefinery; Economic analysis; Energy balance; Life cycle analysis (LCA); Material flow analysis (MFA)

向作者/读者索取更多资源

This study presents a sequential three-steps methodology for the technical, economic and environmental assessment (TEEA) of bioethanol production from waste biomass. In EU the most abundant waste biomasses produced in 2018 could be ascribed to three main categories: lignocellulosic (329.41 Mt), starch (160 Mt) and sugar-based (58.56 Mt). The technical assessment compiled an inventory of the waste biomasses and subsequently designed their biological conversion into ethanol through integrated biorefinery processes by means of material flow analysis (MFA); the economic assessment was aimed at the definition of the cut-off size of the biorefinery plant necessary to achieve profitability; the environmental assessment was based on Life Cycle Analysis (LCA) and energy balance (i.e. energy input consumption). For each of the three waste biomass categories, at least one that was significant as available amount and representative in terms of physico-chemical characteristics, was evaluated: sugarcane for sugar-based, potatoes for starch-based and rice straw, cattle manure and organic fraction of municipal solid waste (OFMSW) for lignocellulosic biomasses. The technical assessment of the biorefinery routes lead to the following yields (kg of bioethanol per kg of biomass): 0.16, 0.17, 0.22, 0.19 and 0.14 respectively. The economic profitability was reached by all biorefineries and Net Present Value (MV) were: 0.85 for sugarcane, 0.11 for potatoes, 0.09 for rice straw, 0.11 for cattle manure and 0.39 for OFMSW. From the environmental perspective, cattle manure reached the highest reduction of climate change and acidification impacts compared to other biomasses, while sugarcane achieved the lowest energy input consumption (around 64%). (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据