4.7 Article

Prioritisation of modelling parameters of a free-floating car sharing system according to their sensitivity to the environmental impacts

期刊

JOURNAL OF CLEANER PRODUCTION
卷 296, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.126081

关键词

Free-floating car sharing; Product-service system; Life cycle assessment; Modelling

向作者/读者索取更多资源

This paper evaluates the environmental impacts of a free-floating electric car sharing system using the life cycle assessment method and identifies eight parameters that influence these impacts. Results show that the electricity mix has a major influence on global warming potential and photochemical oxidation potential indicators, while the vehicle model used in the service is the most influential parameter for abiotic resource depletion potential indicator. The study also demonstrates that the methodological choices heavily influence the results.
Relying on life cycle assessment (LCA) to evaluate product-service systems (PSSs), and more specifically car sharing systems, involves many challenges. Car sharing services include free-floating car sharing, which enables users to take and leave vehicles anytime and anywhere within a limited service area. This paper proposes a model of a free-floating electric car sharing system in which eight parameters that influence environmental impacts may be identified. Among these parameters are the rate of use of the vehicles, standard trip representative of the service's actual use, vehicle model used within the service, and electric mix used to charge the vehicles. Adapting the life cycle assessment methodology to the studied system makes it possible to link the studied parameters to the indicator values of the service's environmental impact. The environmental indicators considered are global warming potential (GWP), photochemical oxidation potential (POCP), eutrophication potential (EP), and abiotic resource depletion potential (ADP). As a result, by using a design of experiments, it is possible to prioritise the eight system parameters according to their influence on the four environmental impact indicators. More specifically, the experiment demonstrates that the electricity mix has a major influence on the GWP and POCP indicators. With regard to the ADP indicator, the vehicle model used in the service is the most influential parameter by far. The use rate and trip type parameters have significant effects on the four environmental indicators. Finally, the experiment also shows that the results heavily rely on the study's methodological choices. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据