4.7 Article

Microcanonical Tunneling Rates from Density-of-States Instanton Theory

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c01118

关键词

-

资金

  1. Swiss National Science Foundation [175696]

向作者/读者索取更多资源

Semiclassical instanton theory is a useful tool for calculating thermal reaction rates, but previous formulations have limitations in computational feasibility and reliability. A new microcanonical formulation called density-of-states instanton theory is proposed in this paper, which overcomes these limitations by avoiding summing over states and achieving a balance between computational efficiency and reliability.
Semiclassical instanton theory is a form of quantum transition-state theory which can be applied to the computation of thermal reaction rates in complex molecular systems including quantum tunneling effects. There have been a number of attempts to extend the theory to treat microcanonical rates. However, the previous formulations are either computationally unfeasible for large systems due to an explicit sum over states or they involve extra approximations, which make them less reliable. We propose a robust and practical microcanonical formulation called density-of-states instanton theory, which avoids the sum over states altogether. In line with the semiclassical approximations inherent to the instanton approach, we employ the stationary-phase approximation to the inverse Laplace transform to obtain the densities of states. This can be evaluated using only post-processing of the data available from a small set of instanton calculations, such that our approach remains computationally efficient. We show that the new formulation predicts results that agree well with quantum scattering theory for an atom-diatom reaction and with experiments for a photoexcited unimolecular hydrogen transfer in a Criegee intermediate. When the thermal rate is evaluated from a Boltzmann average over our new microcanonical formalism, it can overcome some problems of conventional instanton theory. In particular, it predicts a smooth transition at the crossover temperature and is able to describe bimolecular reactions with pre-reactive complexes such as CH3OH + OH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据