4.7 Article

Excited state diabatization on the cheap using DFT: Photoinduced electron and hole transfer

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0035593

关键词

-

资金

  1. National Science Foundation [CHE-1652960]
  2. Camille Dreyfus Teacher-Scholar Awards Program
  3. U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

向作者/读者索取更多资源

Excited state electron and hole transfer underpin fundamental steps in processes such as exciton dissociation at photovoltaic heterojunctions, photoinduced charge transfer at electrodes, and electron transfer in photosynthetic reaction centers. Diabatic states corresponding to charge or excitation localized species, such as locally excited and charge transfer states, provide a physically intuitive framework to simulate and understand these processes. However, obtaining accurate diabatic states and their couplings from adiabatic electronic states generally leads to inaccurate results when combined with low-tier electronic structure methods, such as time-dependent density functional theory, and exorbitant computational cost when combined with high-level wavefunction-based methods. Here, we introduce a density functional theory (DFT)-based diabatization scheme that directly constructs the diabatic states using absolutely localized molecular orbitals (ALMOs), which we denote as Delta -ALMO(MSDFT2). We demonstrate that our method, which combines ALMO calculations with the Delta SCF technique to construct electronically excited diabatic states and obtains their couplings with charge-transfer states using our MSDFT2 scheme, gives accurate results for excited state electron and hole transfer in both charged and uncharged systems that underlie DNA repair, charge separation in donor-acceptor dyads, chromophore-to-solvent electron transfer, and singlet fission. This framework for the accurate and efficient construction of excited state diabats and evaluation of their couplings directly from DFT thus offers a route to simulate and elucidate photoinduced electron and hole transfer in large disordered systems, such as those encountered in the condensed phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据