4.7 Article

Effect of spin-orbit coupling on strong field ionization simulated with time-dependent configuration interaction

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0034807

关键词

-

资金

  1. National Science Foundation [CHE1856437]

向作者/读者索取更多资源

Time-dependent configuration interaction with a complex absorbing potential has been used to simulate strong field ionization by intense laser fields. Because spin-orbit coupling changes the energies of the ground and excited states, it can affect the strong field ionization rate for molecules containing heavy atoms. Configuration interaction with single excitations (CIS) has been employed for strong field ionization of closed shell systems. Single and double excitation configuration interaction with ionization (CISD-IP) has been used to treat ionization of degenerate states of cations on an equal footing. The CISD-IP wavefunction consists of ionizing single (one hole) and double (two hole/one particle) excitations from the neutral atom. Spin-orbit coupling has been implemented using an effective one electron spin-orbit coupling operator. The effective nuclear charge in the spin-orbit coupling operator has been optimized for Ar+, Kr+, Xe+, HX+ (X = Cl, Br, and I). Spin-orbit effects on angular dependence of the strong field ionization have been studied for HX and HX+. The effects of spin-orbit coupling are largest for ionization from the pi orbitals of HX+. In a static field, oscillations are seen between the (2)Pi (3/2) and (2)Pi (1/2) states of HX+. For ionization of HX+ by a two cycle circularly polarized pulse, a single peak is seen when the maximum in the carrier envelope is perpendicular to the molecular axis and two peaks are seen when it is parallel to the axis. This is the result of the greater ionization rate for the pi orbitals than for the sigma orbitals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据