4.7 Article

Generalized mode-coupling theory of the glass transition. I. Numerical results for Percus-Yevick hard spheres

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 21, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0026969

关键词

-

资金

  1. Netherlands Organisation for Scientific Research (NWO)

向作者/读者索取更多资源

Mode-coupling theory (MCT) constitutes one of the few first-principles-based approaches to describe the physics of the glass transition, but the theory's inherent approximations compromise its accuracy in the activated glassy regime. Here, we show that microscopic generalized mode-coupling theory (GMCT), a recently proposed hierarchical framework to systematically improve upon MCT, provides a promising pathway toward a more accurate first-principles description of glassy dynamics. We present a comprehensive numerical analysis for Percus-Yevick hard spheres by performing explicitly wavenumber- and time-dependent GMCT calculations up to sixth order. Specifically, we calculate the location of the critical point, the associated non-ergodicity parameters, and the time-dependent dynamics of the density correlators at both absolute and reduced packing fractions, and we test several universal scaling relations in the alpha- and beta -relaxation regimes. It is found that higher-order GMCT can successfully remedy some of MCT's pathologies, including an underestimation of the critical glass transition density and an overestimation of the hard-sphere fragility. Furthermore, we numerically demonstrate that the celebrated scaling laws of MCT are preserved in GMCT and that the predicted critical exponents manifestly improve as more levels are incorporated in the GMCT hierarchy. Although formally the GMCT equations should be solved up to infinite order to reach full convergence, our finite-order GMCT calculations unambiguously reveal a uniform convergence pattern for the dynamics. We thus argue that GMCT can provide a feasible and controlled means to bypass MCT's main uncontrolled approximation, offering hope for the future development of a quantitative first-principles theory of the glass transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据