4.6 Article

Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 36, 期 4, 页码 673-684

出版社

WILEY
DOI: 10.1002/jbmr.4229

关键词

VIBRATION THERAPY; BONE; OSTEOPOROSIS; MRI

资金

  1. National Institutes of Health [R01 AR055647, R01 AR068382, R01 AR076392]

向作者/读者索取更多资源

In this study, vibration therapy was applied to postmenopausal women to examine its effects on bone health. The results showed that vibration therapy could improve bone stiffness, reduce marrow fat fraction, and enhance trabecular bone microstructural parameters. Overall, the intervention with vibration therapy appeared to have protective effects on bone strength and lineage of mesenchymal stem cells.
There has been evidence that cyclical mechanical stimulation may be osteogenic, thus providing opportunities for nonpharmacological treatment of degenerative bone disease. Here, we applied this technology to a cohort of postmenopausal women with varying bone mineral density (BMD) T-scores at the total hip (-0.524 +/- 0.843) and spine (-0.795 +/- 1.03) to examine the response to intervention after 1 year of daily treatment with 10 minutes of vibration therapy in a randomized double-blinded trial. The device operates either in an active mode (30 Hz and 0.3 g) or placebo. Primary endpoints were changes in bone stiffness at the distal tibia and marrow adiposity of the vertebrae, based on 3 Tesla high-resolution MRI and spectroscopic imaging, respectively. Secondary outcome variables included distal tibial trabecular microstructural parameters and vertebral deformity determined by MRI, volumetric and areal bone densities derived using peripheral quantitative computed tomography (pQCT) of the tibia, and dual-energy X-ray absorptiometry (DXA)-based BMD of the hip and spine. Device adherence was 83% in the active group (n = 42) and 86% in the placebo group (n = 38) and did not differ between groups (p = .7). The mean 12-month changes in tibial stiffness in the treatment group and placebo group were +1.31 +/- 6.05% and -2.55 +/- 3.90%, respectively (group difference 3.86%, p = .0096). In the active group, marrow fat fraction significantly decreased after 12 months of intervention (p = .0003), whereas no significant change was observed in the placebo group (p = .7; group difference -1.59%, p = .029). Mean differences of the changes in trabecular bone volume fraction (p = .048) and erosion index (p = .044) were also significant, as was pQCT-derived trabecular volumetric BMD (vBMD; p = .016) at the tibia. The data are commensurate with the hypothesis that vibration therapy is protective against loss in mechanical strength and, further, that the intervention minimizes the shift from the osteoblastic to the adipocytic lineage of mesenchymal stem cells. (c) 2020 American Society for Bone and Mineral Research (ASBMR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据