4.5 Article

Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09205063.2021.1878805

关键词

Dental composite; low-shrinkage-stress; antibacterial; oral biofilms; calcium phosphate nanoparticles; cytotoxicity

资金

  1. University of Maryland School of Dentistry bridging fund
  2. University of Maryland Baltimore seed grant

向作者/读者索取更多资源

The study demonstrated that the new bioactive composite material exhibited low cytotoxicity, antibacterial properties, and maintained long-term antibacterial activity after aging for 90 days.
A low-shrinkage-stress (LSS), antibacterial and remineralizing nanocomposite was recently developed; however, validation of its long-term antibacterial potency in modulating human salivary-derived biofilm is an unmet need. This study aimed to evaluate the antibacterial effect of the bioactive LSS composite before and after aging in acidic solution for 90 days using a multi-species biofilm model, and to evaluate its cytotoxicity. The LSS composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% nanoparticles of amorphous calcium phosphate (NACP). Biofilm colony-forming units (CFU), lactic acid production, and confocal laser scanning microscopy (3D biofilm) were evaluated before and after three months of aging. Cytotoxicity was assessed against human gingival fibroblasts (HGF). The new LSS composite presented the lowest biofilm CFU, lactic acid and biofilm biomass, compared to controls (n = 6, p < 0.05). Importantly, the new composite exhibited no significant difference in antibacterial performance before and after 90-day-aging, demonstrating long-term antibacterial activity (p > 0.1). The LSS antibacterial and remineralizing composite presented a low cell viability at original extract that has increased with further dilutions. In conclusion, this study spotlighted that the new bioactive composite not only had a low shrinkage stress, but also down-regulated the growth of oral biofilms, reduced acid production, maintained antibacterial activity after the 90-day-aging, and did not compromise the cytocompatibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据