4.6 Article

Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 296, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2021.100283

关键词

-

资金

  1. National Institutes of Health [RO1CA174713, DK090242]

向作者/读者索取更多资源

Metabolic reprogramming in transformed cells provides them with proliferative and survival advantages, but therapeutic applications have been limited by small differences in metabolic pathways and cancer adaptation. However, experiments have shown that downregulation of Ehhadh in hepatoblastoma makes them more susceptible to dietary intervention with C12, leading to longer survival and potential resistance development. This research suggests the feasibility of non-toxic dietary supplementation with C12 or DDDA, which may be compatible with standard chemotherapies.
Metabolic reprogramming provides transformed cells with proliferative and/or survival advantages. Capitalizing on this therapeutically, however, has been only moderately successful because of the relatively small magnitude of these differences and because cancers may further adapt their metabolism to evade metabolic pathway inhibition. Mice lacking the peroxisomal bifunctional enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) and supplemented with the 12-carbon fatty acid lauric acid (C12) accumulate the toxic metabolite dodecanedioic acid (DDDA), which causes acute hepatocyte necrosis and liver failure. We noted that, in a murine model of pediatric hepatoblastoma (HB) and in primary human HBs, downregulation of Ehhadh occurs in association with the suppression of mitochondrial beta- and endosomal/peroxisomal omega-fatty acid oxidation pathways. This suggested that HBs might be more susceptible than normal liver tissue to C12 dietary intervention. Indeed, HB-bearing mice provided with C12- and/or DDDA-supplemented diets survived significantly longer than those on standard diets. In addition, larger tumors developed massive necrosis following short-term DDDA administration. In some HBs, the eventual development of DDDA resistance was associated with 129 transcript differences, similar to 90% of which were downregulated, and approximately two-thirds of which correlated with survival in numerous human cancers. These transcripts often encoded extracellular matrix components, suggesting that DDDA resistance arises from reduced Ehhadh uptake. Lower Ehhadh expression was also noted in murine hepatocellular carcinomas and in subsets of certain human cancers, supporting the likely generality of these results. Our results demonstrate the feasibility of C12 or DDDA dietary supplementation that is nontoxic, inexpensive, and likely compatible with more standard chemotherapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据