4.6 Article

Effects of thermoplastic poly(ether-ester) elastomer and bentonite nanoclay on properties of poly(lactic acid)

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 138, 期 20, 页码 -

出版社

WILEY
DOI: 10.1002/app.50443

关键词

blends; composites; mechanical properties; morphology; thermal properties

资金

  1. Rajamangala University of Technology Thanyaburi

向作者/读者索取更多资源

The addition of TPEE can improve the toughness of PLA, while the additional of BTN can further enhance the mechanical properties and thermal stability of the blends. The presence of an appropriate amount of BTN can result in an exfoliated structure, enhancing the impact strength, tensile strength, and elongation at break.
This work presented the influence of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite (BTN) on improving the mechanical and thermal properties of poly(lactic acid) (PLA). PLA was initially melt mixed with TPEE at six different loadings (5-30 wt%) on a twin screw extruder and then injection molded. The mechanical tests revealed an increasing impact strength and elongation at break with increasing TPEE loading, but a diminishing Young's modulus and tensile strength with respect to pure PLA. The blend at 30 wt% TPEE provided the optimum improvement in toughness, exhibiting an increase in the impact strength and elongation at break by 3.21- and 10.62-fold over those of the pure PLA, respectively. Scanning electron microscopy analysis illustrated a ductile fractured surface of the blends with the small dispersed TPEE domains in PLA matrix, indicating their immiscibility. The 70/30 (wt/wt) PLA/TPEE blend was subsequently filled with three loadings of BTN (1, 3, and 5 parts by weight per hundred of blend resin [phr]), where the impact strength, Young's modulus, tensile strength and thermal stability of all the blends were improved, while the elongation at break was deteriorated. Among the three nanocomposites, that with 1 phr BTN formed exfoliated structure and so exhibited the highest impact strength, elongation at break, and tensile strength compared to the other intercalated nanocomposites. Moreover, the addition of BTN was found to increase the thermal stability of the neat PLA/TPEE blend due to the barrier properties and high thermal stability of BTN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据