4.6 Article

Topological materials by molecular beam epitaxy

期刊

JOURNAL OF APPLIED PHYSICS
卷 128, 期 21, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0022948

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  2. Laboratory Directed Research and Development Program of Oak Ridge National Laboratory

向作者/读者索取更多资源

Topology appears across condensed matter physics to describe a wide array of phenomena which could alter, augment, or fundamentally change the functionality of many technologies. Linking the basic science of topological materials to applications requires producing high-quality thin films. This will enable combining dissimilar materials while utilizing dimensionality, symmetry, and strain to create or control the electronic phase, as well as platforms to fabricate novel devices. Yet, one of the longstanding challenges in the field remains understanding and controlling the basic material properties of epitaxial thin films. The aim of this Perspective article is to discuss how understanding the fundamental properties of topological materials grown by molecular beam epitaxy (MBE) is key to deepening the knowledge of the basic physics, while developing a new generation of topological devices. A focus will be on the MBE growth of intrinsic materials, creation, and control of superconducting and magnetic topological phases. Addressing these questions in the coming decade will undoubtedly uncover many surprises as new materials are discovered and their growth as high-quality thin films is refined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据