4.3 Article

How low can you go? A CBCT dose reduction study

期刊

出版社

WILEY
DOI: 10.1002/acm2.13164

关键词

CBCT; image gently; imaging dose

向作者/读者索取更多资源

The study showed that CBCT dose can be lowered to a level similar to kV image pair dose without compromising positioning accuracy, even for pediatric patient treatments. Translational shifts were within 0.3 and 1.6 mm, while rotational shifts were within 0.2 degree and 0.7 degrees for all sites, when using reduced dose CBCT and kV image pair alignment.
Purpose: Cone beam computed tomography (CBCT) is often used for patient setup based solely on bony anatomy. The goal of this work was to evaluate whether CBCT dose can be lowered to the level of kV image pair doses when used for bony anatomy-based IGRT without compromising positioning accuracy. Methods: An anthropomorphic phantom was CT scanned in the head, head and neck, chest, and pelvis regions and setup on the linear accelerator couch with the isocenter near the planned location. Cone beam computed tomographies were performed with the standard full dose protocol supplied by the linac vendor. With sequentially lowering the dose, three-dimensional (3D) matching was performed for each without shifting the couch. The standard kV image pair protocol for each site was also used to image the phantoms. For all studies, six degrees of freedom was included in the 2D or 3D matching to the extent they could be employed. Imaging doses were determined in air at isocenter following the TG-61 formalism. Results: Cone beam computed tomography dose was reduced by 81-98% of the standard CBCT protocol to nearly that of the standard kV image pair dose for each site. Relative to the standard CBCT shift values, translational shifts were within 0.3 and 1.6 mm for all sites, for the reduced dose CBCT and kV image pair, respectively. Rotational shifts were within 0.2 degree and 0.7 degrees for all sites, for the reduced dose CBCTs and kV image pair, respectively. Conclusion: For bony anatomy-based image guidance, CBCT dose can be reduced to a value similar to that of a kV image pair with similar or better patient positioning accuracy than kV image pair alignment. Where rotations are important to correct, CBCT will be superior to orthogonal kV imaging without significantly increased imaging dose. This is especially important for image guidance for pediatric patient treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据