4.7 Article

Magnetite thin films grown on different flexible polymer substrates at room temperature: Role of antiphase boundaries in electrical and magnetic properties

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 846, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.156368

关键词

Fe3O4/Polymer heterostructures; Saturation magnetization; Magnetoresistance; Verwey transition; Flexible spintronics

资金

  1. Ministry of Higher Education Malaysia under the Higher Institution Centre of Excellence Scheme [R.J090301.7809.4J430]
  2. Fundamental Research Grant Scheme [R.J130000.7809.5F161]
  3. Universiti Teknologi Malaysia [Q. J130000.3509.05G75, R.J130000.7709.5M003]
  4. Universiti Teknologi Malaysia under UTM High Impact Research (UTMHIR) Grant [Q. J130000.2409.08G34]

向作者/读者索取更多资源

Currently, there is an enormous need for flexible electronic devices given their astonishing competencies. In this view, we investigated the structural, electrical, and magnetic characterstics of magnetite (Fe3O4) thin films with a thickness of 100 nm prepared using a reactive RF sputtering technique at 300 K on polycarbonate (PC), polymethyl methacrylate (PMMA), and polythene terephthalate (PET) flexible substrates. The structural properties showed that the films grown on PC, PMMA, and PET substrates exhibited the pure form of Fe3O4 nanostructures by flowing oxygen with a flow rate of 3.5 sccm. The Verwey transition temperatures (Tv) of -123 K, -124 K, and -126 K; saturation magnetization (Ms) values of-220 emu/cm(3y),-235 emu/cm(3), and -261 emu/cm(3); and magnetoresistance (MR) values of-7.1%,-7.3%, and-7.8% under the HIIFilm plane below 60 kOe at 300 K for 100-nm-thick Fe3O4 film on PC, PMMA, and PET substrates respectively were observed. These remarkable results were interpreted and the effect of antiferromagnetically (AFM) coupled antiphase boundaries (APBs) was explained, which suggested that Fe3O4/PET heterostructure can be a most promising component for flexible spintronics. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据