4.6 Article

Effects of aerosol type and simulated aging on performance of low-cost PM sensors

期刊

JOURNAL OF AEROSOL SCIENCE
卷 150, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2020.105654

关键词

Plantower; PMS5003; SPS30; Aerosol light scattering; Photometer; Nephelometer; Optical particle counter

资金

  1. National Institute for Occupational Safety and Health within the US Centers for Disease Control [OH010635, OH010662]

向作者/读者索取更多资源

Studies that characterize the performance of low-cost particulate matter (PM) sensors are needed to help practitioners understand the accuracy and precision of the mass and number concentrations reported by different models. We evaluated Plantower PMS5003, Sensirion SPS30, and Amphenol SM-UART-04L PM sensors in the laboratory by exposing them to: (1) four different polydisperse aerosols (ammonium sulfate, Arizona road dust, NIST Urban PM, and wood smoke) at concentrations ranging from 10 to 1000 mu g m(-3), (2) hygroscopic and hydrophobic aerosols (ammonium sulfate and oil) in an environment with varying relative humidity (15%-90%), (3) polystyrene latex spheres (PSL) ranging from 0.1 to 2.0 mu m in diameter, and (4) extremely high concentrations of Arizona road dust (18-h mean total PM = 33,000 mu g m(-3); 18-h mean PM2.5 = 7300 mu g m(-3)). Linear models relating PMS5003- and SPS30-reported PM2.5 concentrations to TEOM-reported ammonium sulfate concentrations up to 1025 mu g m(-3), nebulized Arizona road dust concentrations up to 540 mu g m(-3), and NIST Urban PM concentrations up to 330 mu g m(-3) had R-2 >= 0.97; however, an F-test identified a significant lack of fit between the model and the data for each sensor/aerosol combination. Ratios of filter-derived to PMS5003-reported PM2.5 concentrations were 1.4, 1.7, 1.0, 0.4, and 4.3 for ammonium sulfate, nebulized Arizona road dust, NIST Urban PM, wood smoke, and oil mist, respectively. For SPS30 sensors, these ratios were 1.6, 2.1, 2.1, 0.6, and 2.2, respectively. Collocated PMS5003 sensors were less precise than collocated SPS30 sensors when measuring ammonium sulfate, nebulized Arizona road dust, NIST Urban PM, oil mist, or PSL. Our results indicated that particle count data reported by the PMS5003 were not reliable. The number size distribution reported by the PMS5003 (a) did not agree with APS data and (b) remained roughly constant whether the sensors were exposed to 0.1 mu m PSL, 0.27 mu m PSL, 0.72 mu m PSL, 2.0 mu m PSL, or any of the other laboratory-generated aerosols. The size distribution reported by the SPS30 did not always agree with APS data, but did shift towards larger particle sizes when the sensors were exposed to 0.72 PSL, 2.0 mu m PSL, oil mist, or Arizona road dust from a fluidized bed generator. The proportions of PM mass assigned as PM1, PM2.5, and PM10 by all three sensor models shifted as the PSL size increased. After the sensors were exposed to high concentrations of Arizona road dust for 18 h, PM2.5 concentrations reported by SPS30 sensors remained consistent, whereas 3/8 PMS5003 sensors and 2/7 SM-UART-04L sensors began reporting erroneously high values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据