4.8 Review

Gas Phase Studies of the Pesci Decarboxylation Reaction: Synthesis, Structure, and Unimolecular and Bimolecular Reactivity of Organometallic Ions

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 48, 期 2, 页码 329-340

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar500377u

关键词

-

资金

  1. ARC [DP110103844]
  2. ARC (CoE program)

向作者/读者索取更多资源

Decarboxylation chemistry has a rich history, and in more recent times, it has been recruited in the quest to develop cheaper, cleaner, and more efficient bond-coupling reactions. Thus, over the past two decades, there has been intense investigation into new metal-catalyzed reactions of carboxylic substrates. Understanding the elementary steps of metal-mediated transformations is at the heart of inventing new reactions and improving the performance of existing ones. Fortunately, during the same time period, there has been a convergence in mass spectrometry (MS) techniques, which allows these catalytic processes to be examined efficiently in the gas phase. Thus, electrospray ionization (ESI) sources have been combined with ion-trap mass spectrometers, which in turn have been modified to either accept radiation from tunable OPO lasers for spectroscopy based structural assignment of ions or to allow the study of ionmolecule reactions (IMR). The resultant complete gas-phase chemical laboratories provide a platform to study the elementary steps of metal-catalyzed decarboxylation reactions in exquisite detail. In this Account, we illustrate how the powerful combination of ion trap mass spectrometry experiments and DFT calculations can be systematically used to examine the formation of organometallic ions and their chemical transformations. Specifically, ESI-MS allows the transfer of inorganic carboxylate complexes, [RCO2M(L)(n)](x), (x = charge) from the condensed to the gas phase. These mass selected ions serve as precursors to organometallic ions [RM(L)(n)](x) via neutral extrusion of CO2, accessible by slow heating in the ion trap using collision induced dissociation (CID). This approach provides access to an array of organometallic ions with well-defined stoichiometry. In terms of understanding the decarboxylation process, we highlight the role of the metal center (M), the organic group (R), and the auxiliary ligand (L), along with cluster nuclearity, in promoting the formation of the organometallic ion. Where isomeric organometallic ions are generated and normal MS approaches cannot distinguish them, we describe approaches to elucidate the decarboxylation mechanism via determination of their structure. These unmasked organometallic ions, [RM(L)n]x, can also be structurally interrogated spectroscopically or via CID. We have thus compared the gas-phase structures and decomposition of several highly reactive and synthetically important organometallic ions for the first time. Perhaps the most significant aspect of this work is the study of bimolecular reactions, which provides experimental information on mechanistically obscure bond-formation and cross-coupling steps and the intrinsic reactivity of ions. We have sought to understand transformations of substrates including acidbase and hydrolysis reactions, along with reactions resulting in CC bond formation. Our studies also allow a direct comparison of the performance of different metal catalysts in the individual elementary steps associated with protodecarboxylation and decarboxylative alkylation cycles. Electronic structure (DFT and ab initio) and dynamics (RRKM) calculations provide further mechanistic insights into these reactions. The broad implications of this research are that new reactions can be discovered and that the performance of metal catalysts can be evaluated in terms of each of their elementary steps. This has been particularly useful for the study of metal-mediated decarboxylation reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据