4.7 Article

SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability

期刊

出版社

MDPI
DOI: 10.3390/ijms22020606

关键词

thermodynamics stability; single point mutation; sequence-based; machine learning; web server

资金

  1. National Institutes of Health [R01GM093937, P20GM121342]

向作者/读者索取更多资源

SAAFEC-SEQ is a gradient boosting decision tree machine learning method for predicting the change of folding free energy caused by amino acid substitutions. It does not require the 3D structure of the corresponding protein, making it suitable for genome-scale investigations with sparse structural information.
Modeling the effect of mutations on protein thermodynamics stability is useful for protein engineering and understanding molecular mechanisms of disease-causing variants. Here, we report a new development of the SAAFEC method, the SAAFEC-SEQ, which is a gradient boosting decision tree machine learning method to predict the change of the folding free energy caused by amino acid substitutions. The method does not require the 3D structure of the corresponding protein, but only its sequence and, thus, can be applied on genome-scale investigations where structural information is very sparse. SAAFEC-SEQ uses physicochemical properties, sequence features, and evolutionary information features to make the predictions. It is shown to consistently outperform all existing state-of-the-art sequence-based methods in both the Pearson correlation coefficient and root-mean-squared-error parameters as benchmarked on several independent datasets. The SAAFEC-SEQ has been implemented into a web server and is available as stand-alone code that can be downloaded and embedded into other researchers' code.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据