4.7 Article

In-Depth Immune-Oncology Studies of the Tumor Microenvironment in a Humanized Melanoma Mouse Model

期刊

出版社

MDPI
DOI: 10.3390/ijms22031011

关键词

Chipcytometry; multiplex immunohistochemistry; melanoma; humanized mice; tumor microenvironment; flow cytometry; immunohistochemistry

资金

  1. German Research Foundation [CRC1066]

向作者/读者索取更多资源

The presence and interaction of immune cells in the tumor microenvironment have a significant impact on disease progression and treatment response. Spatial analyses are crucial in the complex interplay between neoplastic and immune cells, aiming to develop new therapeutic strategies.
The presence and interaction of immune cells in the tumor microenvironment is of significant importance and has a great impact on disease progression and response to therapy. Hence, their identification is of high interest for prognosis and treatment decisions. Besides detailed phenotypic analyses of immune, as well as tumor cells, spatial analyses is an important parameter in the complex interplay of neoplastic and immune cells-especially when moving into focus efforts to develop and validate new therapeutic strategies. Ex vivo analysis of tumor samples by immunohistochemistry staining methods conserves spatial information is restricted to single markers, while flow cytometry (disrupting tissue into single cell suspensions) provides access to markers in larger numbers. Nevertheless, this comes at the cost of scarifying morphological information regarding tissue localization and cell-cell contacts. Further detrimental effects incurred by, for example, tissue digestion include staining artifacts. Consequently, ongoing efforts are directed towards methods that preserve, completely or in part, spatial information, while increasing the number of markers that can potentially be interrogated to the level of conventional flow cytometric methods. Progression in multiplex immunohistochemistry in the last ten years overcame the limitation to 1-2 markers in classical staining methods using DAB with counter stains or even pure chemical staining methods. In this study, we compared the multiplex method Chipcytometry to flow cytometry and classical IHC-P using DAB and hematoxylin. Chipcytometry uses frozen or paraffin-embedded tissue sections stained with readily available commercial fluorophore-labeled antibodies in repetitive cycles of staining and bleaching. The iterative staining approach enables sequential analysis of a virtually unlimited number of markers on the same sample, thereby identifying immune cell subpopulations in the tumor microenvironment in the present study in a humanized mouse melanoma model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据