4.7 Article

Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability

期刊

出版社

MDPI
DOI: 10.3390/ijms22010009

关键词

ex vivo intestinal model; human intestine; permeability; immune status; intestinal mucosa; silver nanoparticles

资金

  1. NCTR/US FDA

向作者/读者索取更多资源

The study revealed that there are different responses to consumer products containing antimicrobial silver nanoparticles between male and female subjects. Males showed higher levels of inflammatory markers after treatment, while females did not show significant effects. Smaller size silver nanoparticles perturbed more permeability-related genes in males, while exposure to 20 nm nanoparticles resulted in a greater upregulation of genes in females.
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-alpha (10 nm), and IFN-gamma (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据