4.7 Article

Exopolysaccharide Isolated from Lactobacillus plantarum L-14 Has Anti-Inflammatory Effects via the Toll-Like Receptor 4 Pathway in LPS-Induced RAW 264.7 Cells

期刊

出版社

MDPI
DOI: 10.3390/ijms21239283

关键词

postbiotics; exopolysaccharide; lipopolysaccharide; Toll-like receptor 4; inflammation; oxidative stress

资金

  1. National Research Foundation of Korea [NRF-2020R1F1A1070433]
  2. Technology Development Program - Ministry of SMEs and Startups (Korea) [S2519744]
  3. Gyeonggi Technology Development Program - Gyeonggi Province [D191972]
  4. Korea Technology & Information Promotion Agency for SMEs (TIPA) [S2519744] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Inflammation is a biological response of the immune system to defend the body from negative stimulation. However, the excessive inflammatory response can damage host tissues and pose serious threats. Exopolysaccharide (EPS), one of the postbiotics, is secreted from lactic acid bacteria. Although many studies have described the beneficial effects of EPS, such as its anti-inflammatory and anti-oxidant effects, its underlying mechanisms have remained to be poorly understood. Thus, we identified that EPS obtained from Lactobacillus plantarum L-14 was a homogeneous polysaccharide primarily comprised of glucose. To examine these anti-inflammatory effects, an inflammatory response was induced by lipopolysaccharide (LPS) administration to mouse macrophage RAW 264.7 cells that were pretreated with EPS. The anti-inflammatory effects of EPS were identified by analyzing the changes within inflammatory markers at the molecular level. We demonstrate here that EPS suppressed proinflammatory mediators, such as cyclooxygenase-2, interleukin-6, tumor necrosis factor-alpha, and interleukin-1 beta, and downregulated the expression of an inducible nitric oxide synthase known to lead to oxidative stress. It was also confirmed that EPS had anti-inflammatory effects by blocking the interaction of LPS with Toll-like receptor 4 (TLR4), as demonstrated by using the known TLR4 inhibitor TAK-242. In addition, we found that EPS itself could suppress the expression of TLR4. Consequently, our data suggest that EPS can be a potential target for the development of natural product-derived medicine for treating inflammatory diseases related to TLR4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据