4.5 Article

Benchmarking of scaling and fouling of reverse osmosis membranes in a power generation plant of paper and board mill: an industrial case of a paper and board mill study

出版社

SPRINGER
DOI: 10.1007/s13762-020-03015-1

关键词

Acid treatment; LSI; Membrane; Reverse osmosis; Fouling

向作者/读者索取更多资源

The study characterizes the reverse osmosis (RO) technology at a water treatment plant in Pakistan, noting scaling and fouling as major challenges in the chemical industry. By adjusting the feed water quality and controlling the LSI factor, the issues were successfully mitigated.
The present study reports the characterization of reverse osmosis (RO) technology at water treatment plant Cogen-2 in paper and Board mills, Pakistan. RO is a commonly used process to obtain de-mineralized water for high-pressure boiler operation in thermal power plants. Scaling and fouling in three-stage RO plants is a major challenge in chemical industry due to the use of raw brackish water in the power plant of paper and board mills. In our study, the feed water quality of RO was changed from soft water to raw water to make it economical. The cleaning frequency was increased three times than normal, which was unsafe for operation and it was required to control scaling and fouling to achieve the desired result. Differential pressures behavior of all stages for 2-month data was observed without acid treatment, and the results of Langelier Saturation Index (LSI) control parameters (temperature, pH, total dissolved solids, calcium hardness, and alkalinity) clearly showed the abnormality. To optimize scaling and fouling of RO, the LSI factor was controlled in total reject water for the next 2 months by acid treatment in feed water. Duration of chemical cleaning and membranes' life has been extended by fouling and scaling control. Understanding the effect of operational parameters in RO membranes is essential in water process engineering due to its broad applications in drinking water, sanitation, seawater, desalination process, wastewater treatment, and boiler feed water operation. The product flow increased from 18.3 to 19.9 m(3)/h, and this was due to a decrease in the rejection flow from 8.2 to 6.7 m(3)/h. The total reject stream pressure also increased from 8.1 to 9 bar. A lower value of LSI of 1.6 is obtained in the reject water stream after the acid treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据