4.7 Article

Electrochemical prospects and potential of hausmannite Mn3O4 nanoparticles synthesized through microplasma discharge for supercapacitor applications

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 45, 期 5, 页码 7038-7056

出版社

WILEY
DOI: 10.1002/er.6288

关键词

electrochemical performances; microplasma discharge; Mn3O4 nanoparticles; supercapacitor

资金

  1. UGC-BSR Start-up grant from University Grants Commission, New Delhi, India [F.30-354/2017 BSR]

向作者/读者索取更多资源

The study demonstrated the efficient synthesis of Mn3O4 nanoparticles using microplasma array method, which showed high specific capacitance as an electrode material for supercapacitor application. The synthesized nanoparticles exhibited high cyclic stability and energy density, making them promising for practical applications.
The special characteristics of microplasma such as microscale geometry, atmospheric operation, self-organization property, and high radical density are suitable for the synthesis of nanoparticles. Trimanganese tetroxide (Mn3O4) nanoparticles (NPs) were synthesized through plasma reduction mechanism by the use of sustainable, rapid, and microplasma array method at atmospheric conditions in a single step. 96.10% reaction yield of hausmannite Mn3O4 NPs were gained by the reduction of potassium permanganate (KMnO4) precursor solution in the presence of radicals in the microplasma discharge with a processing time of 30 minutes. The structure, oxidation state, morphology, composition, and specific surface area of synthesized particles were determined by XRD, FTIR, XPS, FE-SEM with EDX, HR-TEM, and BET characterization techniques. Spherical polydisperse particles with high surface area (304.01 m(2) g(-1)) and narrow distribution were obtained. The performance of synthesized Mn3O4 NPs as an electrode material for supercapacitor application was analyzed by electrochemical workstation, which exhibited a high specific capacitance of 144.5 Fg(-1) at a current density of 0.5 Ag-1 and the electrode material retained 43.54% of its initial capacitance after 1500 cycles. The asymmetric performance of Mn3O4 NPs as one of the electrode materials exhibited high cyclic stability with 100% retention capacitance with an energy density of 3.33 Wh kg(-1) at 0.1 Ag-1 and high power density of 422.5 W kg(-1) at 0.5 Ag-1, respectively. The present study gives new perspectives on a simple, efficient, eco-friendly, and powerful microplasma array method for the coalescence of Mn3O4 NPs and the analysis of electrochemical behavior of corresponding NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据